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Agenda

● Introduction.
○ Physical Simulations & Computational Fluid Dynamics
○ Limitations and need for data-driven physical simulators.

● Neural Operators
○ Working principles and Fourier Neural Operator.
○ Implicit Neural Representations.

● Applications for aircraft aerodynamics.
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Introduction: Computational Fluid Dynamics

The resulting flowfield typically depends on:
● The governing physics (the PDE model used).
● The parametric and inflow conditions (velocity, angle of incidence..)
● The boundary conditions (the shape of the domain).

Parametric Variations (speed, inflow angle..)Geometry Variations (Boundary)

Computational Fluid Dynamic is used for:
● Aircraft aerodynamic design.
● Automotive and race car design.
● Weather modeling and forecast.
● Heart and biological systems simulation.
● ……

Bonnet, Florent, et al. "Airfrans: High fidelity computational fluid dynamics dataset for approximating reynolds-averaged navier–stokes solutions." Advances in Neural Information 
Processing Systems 35 (2022): 23463-23478.
Catalani, Giovanni, et al. "A comparative study of learning techniques for the compressible aerodynamics over a transonic RAE2822 airfoil." Computers & Fluids 251 (2023): 
105759.
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Introduction: Computational Fluid Dynamics
Real Industrial applications: 3D, shape 
variations…

In order to solve the flowfield we need high mesh resolutions:
● For large domains in 3D this translates to millions of mesh nodes.
● A single CFD computation can take days.
● Multiple CFD computations are needed to capture all possible flight conditions.
● Multiple geometries and design need to be simulated.
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In order to solve the flowfield we need high mesh resolutions:
● For large domains in 3D this translates to millions of mesh nodes.
● A single CFD computation can take days.
● Multiple CFD computations are needed to capture all possible flight conditions.
● Multiple geometries and design need to be simulated.

Ideally, we want real time physical simulations :
● Leverage past simulations to train data-driven simulators of the physics.
● Trade-off: accuracy vs speed.
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Challenges: physical simulations data is
● High Dimensional.
● Unstructured.
● Strongly non-linear.
● Changing underlying domain and geometries.
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Introduction: Computational Fluid Dynamics
Real Industrial applications: 3D, shape 
variations…

In order to solve the flowfield we need high mesh resolutions:
● For large domains in 3D this translates to millions of mesh nodes.
● A single CFD computation can take days.
● Multiple CFD computations are needed to capture all possible flight conditions.
● Multiple geometries and design need to be simulated.

Ideally, we want real time physical simulations :
● Leverage past simulations to train data-driven simulators of the physics.
● Trade-off: accuracy vs speed.

Challenges: physical simulations data is
● High Dimensional.
● Unstructured.
● Strongly non-linear.
● Changing underlying domain and geometries.

⇒ Need new class of ML architectures to learn physical simulations
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        Practically, in a supervised setting given a set of input and output samples,

Given a probability measure on the data                 we want to minimize the approximation error: 

The goal is to find a parameterized approximation of the underlying operator                                            such that : 

Given input/output infinite dimensional function spaces                                    defined on a physical domain                  
We aim to learn an approximation for the true PDE operator mapping functions defined on those function spaces:                      

Operator Learning 
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● The learned operator converges to the continuum operator as discretization is increased (discretization 
convergence).● The learned representations are the same across different discretizations of the same input/output 
functions.  

        Typically we know the values of the input and output functions in a finite set of points on the spatial domain

However we want to approximate the underlying continuous operator independently of the training discretization:
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The approximated operator model is a function: it can be queried anywhere in the input domain.

Operator Learning: Desirable Features 

The approximated model can be trained at different discretizations.

The learned operator converges to the continuum operator as discretization is increased (discretization 
convergence).

The learned representations are the same across different distcetizations of the same input/output 
functions.  

GNN GNN

Example: Message Passing Graph Neural Networks  are not discretization invariant:          
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Neural Operators - Learning continuous representations

Traditional NN learns a mapping between 
input and output points on a fixed, discrete 
grid.

Azizzadenesheli, Kamyar, et al. "Neural operators for accelerating scientific simulations and design." Nature Reviews Physics (2024): 1-9.
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Neural Operators - Learning continuous representations

Traditional NN learns a mapping between 
input and output points on a fixed, discrete 
grid.

A Neural Operator maps between 
functions  on continuous domain even if the 
data is defined on a fixed grid

Azizzadenesheli, Kamyar, et al. "Neural operators for accelerating scientific simulations and design." Nature Reviews Physics (2024): 1-9.
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Neural Operators - Learning continuous representations

Traditional NN learns a mapping between 
input and output points on a fixed, discrete 
grid.

A Neural Operator maps between 
functions  on continuous domain even if the 
data is defined on a fixed grid

A Neural Operator can perform 
superresolution at test time.

Azizzadenesheli, Kamyar, et al. "Neural operators for accelerating scientific simulations and design." Nature Reviews Physics (2024): 1-9.
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Fourier Neural Operator

Map

Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).

Methodology:
● Continuous representation obtained with the Fourier Transform of the signals.
● A parametric map is learnt between the input and output truncated Fourier representations.

Results:
● Resolution flexibility: train on coarse meshes, test on fine mesh without loss of accuracy.
● Preserve physical meaning across resolutions.

Limitations:
● Computing Fourier Transform on irregular grids is not efficient as FFT cannot be used.
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Neural Networks can be used as a continuous approximation of signals on general domains: the value of the signal at any 
spatial input location can be obtained as the output of an Implicit Neural Representation (INRs).

Implicit Neural Representations: continuous representation of data.

Training a Neural Network: finding the optimal parameters                                          that minimize the reconstruction error

Once we fit a signal with a Neural Network, we can query the Network at any spatial location: we have a continuous representation.
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Implicit Neural Representations

By learning continuous representation of the data, we can formulate the operator learning task in the Neural Field 
weight space.

For physical simulation we are interested in solving PDEs on different geometries (shapes).
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Implicit Neural Representations

By learning continuous representation of the data, we can formulate the operator learning task in the Neural Field 
weight space.

For physical simulation we are interested in solving PDEs on different geometries (shapes).

A shape is conveniently describe in space by a distance function field.
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Implicit Neural Representations

By learning continuous representation of the data, we can formulate the operator learning task in the Neural Field 
weight space.

For physical simulation we are interested in solving PDEs on different geometries (shapes).

Learn parametric map 
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Implicit Neural Representations

By learning continuous representation of the data, we can formulate the operator learning task in the Neural Field 
weight space.

For physical simulation we are interested in solving PDEs on different geometries (shapes).

Comparison with FNO: Neural Field weights vs Fourier 
Modes

Learn parametric map 
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Neural Field Encoder for the Geometry: Learning the Signed Distance Function

Neural Field Encoder for the Surface Pressure 

Mapping the latent spaces

Additional Parameters (Mach, Angle of Attack…)

Catalani, Giovanni, et al. "Neural fields for rapid aircraft aerodynamics simulations." Scientific Reports 14.1 (2024): 25496.
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ML4CFD Neurips Challenge
https://ml-for-physical-simulation-challenge.irt-systemx.fr/

Objectives:
• Open international competition aimed at developing Data Driven physical 

simulators of Computational Fluid Dynamics. 
• Task: Predict surfacic & volumic fields around unseen airfoils at test 

Reynolds numbers, Mach and Angles of Attack.
• Really small  training dataset with only 100 CFD computations.
Evaluation metrics:
• Accuracy on prediction on and off the airfoil surface.
• Physical compliance: accuracy in prediction of lift and drag.
• Speed: acceleration compared to CFD solver.
• Out of Distribution performance: tested on ood geometries and ood flow 

regimes.
Results:
• Our approach based on Neural Fields positioned 3rd among more than 200 

teams.
• Times 5000 speedup at inference compared to the high fidelity simulator.

https://ml-for-physical-simulation-challenge.irt-systemx.fr/
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