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Agenda

e  Introduction.

o« Physical Simulations & Computational Fluid Dynamics

o. Limitations and need for data-driven physical simulators.
e Neural Operators

o Working principles and Fourier Neural Operator.

o Implicit Neural Representations.
e Applications for aircraft aerodynamics.



Introduction: Computational Fluid Dynamics

Parametric Variations (speed, inflow angle.Geometry Variations (Boundary)

Computational Fluid Dynamic is used for:
e Aircraft aerodynamic design.
e Automotive and race car design.
e \Weather modeling and forecast.
e Heart and biological systems simulation.

P—Po(kpa)

P—Po(kpa)

The resulting flowfield typically depends on:
e The governing physics (the PDE model used).
e The parametric and inflow conditions (velocity, angle of incidendé..)
e The boundary conditions (the shape of the domain).
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Bonnet, Florent, et al. "Airfrans: High fidelity computational fluid dynamics dataset for approximating reynolds-averaged navier—stokes solutions." Advances in Neural Information
Processing Systems 35 (2022): 23463-23478.

3 Catalani, Giovanni, et al. "A comparative study of learning techniques for the compressible aerodynamics over a transonic RAE2822 airfoil." Computers & Fluids 251 (2023):
105759.



Introduction: Computational Fluid Dynamics

In order to solve the flowfield we need high mesh resolutions:

For large domains in 3D this translates to millions of mesh nodes.

A single CFD computation can take days.

Multiple CFD computations are needed to capture all possible flight conditions
Multiple geometries and design need to be simulated.

Real Industrial applications: 3D, shape
variations...
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=> Need new class of ML architectures to learn physical simulations




Operator Learning Airbus Amber

Given input/output infinite dimensional function spaces U C F(£2, R) defined on a physical@omdR?

We aim to learn an approximation for the true PDE operator mapping functions defined on those function spaces:
G AU

The goal is to find a parameterized approximation of the underlying opératar A — U 6 € © such that :
Gy ~ GT

Given a probability measure on the déta ~ U we want to minimize the approximation error:
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Operator Learning: learning from discrete data. Aibus Amber

Typically we know the values of the input and output functions in a finite set of points on the spatialeméiry, ..., £, } C €2

However we want to approximate the underlying continuous operator independently of the training discretization:

The learned operator converges to the continuum operator as discretization is increased (discretization

AAanviarnanc~n)

The learned representations are the same across different discretizations of the same input/output
functions.



Operator Learning: Desirable Features Aibus Amber

The approximated operator model is a function: it can be queried anywhere in the input domain.

The approximated model can be trained at different discretizations.

The learned operator converges to the continuum operator as discretization is increased (discretization
convergence).

The learned representations are the same across different distcetizations of the same input/output
functions.

Example: Message Passing Graph Neural Networks are not discretization invariant:
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Neural Operators - Learning continuous representations
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Traditional NN learns a mapping between
input and output points on a fixed, discrete

grid.

Azizzadenesheli, Kamyar, et al. "Neural operators for accelerating scientific simulations and design." Nature Reviews Physics (2024): 1-9.
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Neural Operators - Learning continuous representations
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A Neural Operator maps between
functions on continuous domain even if the

data is defined on a fixed grid

Traditional NN learns a mapping between
input and output points on a fixed, discrete

grid.

12 Azizzadenesheli, Kamyar, et al. "Neural operators for accelerating scientific simulations and design." Nature Reviews Physics (2024): 1-9.



Neural Operators - Learning continuous representations
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A Neural Operator can perform

A Neural Operator maps between
superresolution at test time.

functions on continuous domain even if the
data is defined on a fixed grid

Traditional NN learns a mapping between
input and output points on a fixed, discrete

grid.

13 Azizzadenesheli, Kamyar, et al. "Neural operators for accelerating scientific simulations and design." Nature Reviews Physics (2024): 1-9.



Fourier Neural Operator
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Methodology:
e Continuous representation obtained with the Fourier Transform of the signals.
e A parametric map is learnt between the input and output truncated Fourier representations.

Results:
e Resolution flexibility: train on coarse meshes, test on fine mesh without loss of accuracy.
e Preserve physical meaning across resolutions.

Limitations:
e Computing Fourier Transform on irregular grids is not efficient as FFT cannot be used.

14 Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).



Implicit Neural Representations: continuous representation of data.

Neural Networks can be used as a continuous approximation of signals on general domains: the value of the signal at any
spatial input location can be obtained as the output of an Implicit Neural Representation (INRs).

T
p
Yy
Training a Neural Network: finding the optimal paramet@rs= {I/Vl, bl}l:l oy that minimize the reconstruction error
{(zi, i), Di) Fi=1,..N p = fo(z,y)

Once we fit a signal with a Neural Network, we can query the Network at any spatial location: we have a continuous representation.
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Implicit Neural Representations

By learning continuous representation of the data, we can formulate the operator learning task in the Neural Field
weight space.

For physical simulation we are interested in solving PDEs on different geometries (shapes).
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Implicit Neural Representations
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Implicit Neural Representations

By learning continuous representation of the data, we can formulate the operator learning task in the Neural Field
weight space.

For physical simulation we are interested in solving PDEs on different geometries (shapes).
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Implicit Neural Representations

By learning continuous representation of the data, we can formulate the operator learning task in the Neural Field
weight space.

For physical simulation we are interested in solving PDEs on different geometries (shapes).

Comparison with FNO: Neural Field weights vs Fourier ,
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Neural Field Encoder for the Geometry: Learning the Signed Distance Function
Mapping the latent spaces
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Additional Parameters (Mach, Angle of Attack...)
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Article ‘ Open access ‘ Published: 26 October 2024

Neural fields For rapid aircraft aerodynamics
simulations

Giovanni Catalani &, Siddhant Agarwal, Xavier Bertrand, Frédéric Tost, Michael Bauerheim & Joseph

Morlier

Scientific Reports 14, Article number: 25496 (2024) | Cite this article

20 Catalani, Giovanni, et al. "Neural fields for rapid aircraft aerodynamics simulations." Scientific Reports 14.1 (2024): 25496.



ML4CFD Neurips Challenge

htt _s://m{-for— hysical-simulation-challenge.irt-systemx.fr/
Objectives:

+ Open international competition aimed at developing Data Driven physical
simulators of Computational Fluid Dynamics.

+ Task: Predict surfacic & volumic fields around unseen airfoils at test
Reynolds numbers, Mach and Angles of Attack.

+ Really small training dataset with only 100 CFD computations.

Evaluation metrics:

» Accuracy on prediction on and off the airfoil surface.

» Physical compliance: accuracy in prediction of lift and drag.

» Speed: acceleration compared to CFD solver.

» Out of Distribution performance: tested on ood geometries and ood flow

regimes.
Results:

» Our approach based on Neural Fields positioned 3rd among more than 200
teams.

 Times 5000 speedup at inference compared to the high fidelity simulator.
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https://ml-for-physical-simulation-challenge.irt-systemx.fr/
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