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Introduction and Objectives

Surrogate Modeling of Transonic Flows
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    Introduction - Transonic Flows

         Transonic Flows are of paramount importance in commercial and military aviation.

Accurate wing design for transonic conditions can lead to significant drag reduction 
and fuel savings. 

Challenges in developing surrogate models for transonic flows are represented by 
the presence of shock waves.

[1] Tijdeman, H., and R. Seebass. "Transonic flow past oscillating airfoils." Annual Review of Fluid Mechanics 12.1 (1980): 181-222. 3



    Introduction - Implicit Neural Representations.

Neural Networks can continuously approximate signals on general domains: Implicit Neural Representation (INRs).

A shape can be parametrized by a NN 
that outputs the Signed Distance 
Function value at each point [2].

Similarly, for a physical field on a mesh 
(es. a pressure field) [3].

[2] Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape representation." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
[3] Serrano, Louis, et al. "Operator Learning with Neural Fields: Tackling PDEs on General Geometries." Advances in Neural Information Processing Systems 36 (2024). 4

Distinct NN for each sample Latent code conditioning



    Introduction - Objectives

Demonstrate the potential of an INR based approach in predicting transonic aerodynamics, namely the shock region.

Compare the approach with traditional and state of the art surrogate models.

Analyze the effect of the INR architecture, namely in terms of input encoding.

Show the advantages of using a multiscale Implicit Neural Representation architecture.

5



Methodology
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    Methodology - RAE 2822 Dataset.

~1000 RANS simulations on the transonic RAE2822 airfoil [6].

   Mach Number in the range [0.2,0.9].

           AoA in the range [0 deg, 9 deg].

   
Fixed triangular, unstructured mesh ~27000 nodes

   

[6] Catalani, Giovanni, et al. "A comparative study of learning techniques for the compressible aerodynamics over a transonic RAE2822 airfoil." Computers & Fluids 251 (2023): 105759.
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Dataset consists of multiple pressure field samples                        where each sample consists of coordinate and pressure 
values tuples: .

   Latent codes                       and network weights are jointly learnt:

   
At training time, a subset of nodes is dynamically subsampled to speed up training.

   

     Methodology - INR Model Overview

Training
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The latent space dynamics is learnt with a regressor (MLP) 

   



Testing

     Methodology - INR Model Overview
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Dataset consists of multiple pressure field samples                        where each sample consists of coordinate and pressure 
values tuples: .

   Latent codes                       and network weights are jointly learnt:

   
At training time, a subset of nodes is dynamically subsampled to speed up training..

   
The latent space dynamics is learnt with a regressor (MLP) 

   



To enhance convergence to the high frequency components and to limit at the same time overfitting, inspired by  [6]  we 
propose a multiscale FF-NN architecture:

– Multiple Gaussian encodings are operated on the input coordinates:

– The intermediate outputs                          are concatenated and passed through a final linear layer. 

Fourier Feature Networks [5] perform positional encoding via the Fourier Basis functions.The standard deviation controls 
the kernel bandwidth and the overfitting behaviour of the model.

  
   

    Methodology - Multiscale Architecture
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[6] Wang, Sifan, Hanwen Wang, and Paris Perdikaris. "On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks." Computer 
Methods in Applied Mechanics and Engineering 384 (2021): 113938. 10

[5] Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." Advances in Neural Information Processing Systems 33 (2020)



Results and Discussion

RAE2822 Airfoil Dataset
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Results and Discussion

POD + GPR CFDGUNET INR
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                                        MSE
                  (Non Normalized Outputs, Factor 10e6)

    INR 
(MultiScale)

GUNET POD + GPR

1.51 4.1 3.2



MonoscaleMonoscale Multiscale 

Results and Discussion
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Multiscale

Monoscale
                                     MSE
               (Non Normalized Outputs, Factor 10e6)

1.61 1.67 1.51
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Conclusions and Recommendations
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    Conclusions 

         Implicit Neural Representations have been demonstrated to accurately model the transonic flow over an airfoil.

The shock region non linearities are properly reconstructed with similar accuracy to Multiscale Graph Unet.

        The model can be trained at lower resolutions with similar performance (approximate discretization invariance).

       Feature Encoding with larger frequencies improve shocks capturing accuracy but lead to more noisy outputs. 

       The model can benefit from a multiscale architecture which performs multiple encodings.
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    Recommendations 

         The approach should be demonstrated for learning complex aerodynamics on manifolds in 3D.

The frequency encoding should be adapted to the frequency spectrum of the training dataset.

        Discretization invariance is an important aspect that should be investigated for extension to large mesh simulations where full 
        graph training is not feasible.
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Thanks for listening!
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Reach out at: giovanni.catalani@airbus.com
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    Appendix - RAE 2822 Dataset.

~1000 RANS simulations on the transonic RAE2822 airfoil [6].

   Mach Number in the range [0.2,0.9].

           AoA in the range [0 deg, 9 deg].

   
Fixed triangular, unstructured mesh ~27000 nodes

   

[6] Catalani, Giovanni, et al. "A comparative study of learning techniques for the compressible aerodynamics over a transonic RAE2822 airfoil." Computers & Fluids 251 (2023): 105759.
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Gaussian Encoding

The standard deviation controls the kernel bandwidth and the 
overfitting behaviour of the model.

    Appendix - Fourier Feature Networks

[5] Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." Advances in Neural Information Processing Systems 33 (2020)

Simple MLPs are characterized 
by spectral bias: slow 
convergence to high frequency 
feature 

Positional encoding: Fourier 
Feature Networks [5] perform 
positional encoding via the 
Fourier Basis functions.

Fourier Feature mapping make 
the regression kernel function 
stationary. Convergence to 
higher frequency content of the 
data is enhanced.
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    Appendix - Baseline Methods

Proper Orthogonal Decomposition + Gaussian Process Regression 

POD Formulation

   

Gaussian Process Regression

Radial Basis Function Kernel with 
optimized hyperparameters [7].

   

Final Prediction

r=128 component are retained 
(latent dimension)

   

[7] Bouhlel, Mohamed Amine, et al. "A Python surrogate modeling framework with derivatives." Advances in Engineering Software 135 (2019): 102662.
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Appendix - Baseline Methods

Graph UNET [8]

GCN

GCN

  Encode

GCN

Decode

Pool / Unpool

Residual

 Graph 
Conv

Encoder - Process - Decode

   SageConvolution Layers

   TopKPooling (3 Levels)

   
Latent dimension of 128

   
Inputs: x,y,Mach,alpha
Outputs: Pressure

   
[7] Gao, Hongyang, and Shuiwang Ji. "Graph u-nets." international conference on machine learning. PMLR, 2019..
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POD + GPR CFDGUNET INR

Appendix
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POD + GPR CFDGUNET INR

Appendix
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Appendix

POD + GPR CFDGUNET INR
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MonoscaleMonoscale Multiscale 

Appendix
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Multiscale

Monoscale
                                     MSE
               (Non Normalized Outputs, Factor 10e6)

1.61 1.67 1.51
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    Appendix - Landscape of Surrogate Models

Limitations

● Fixed Discretization.
● Non-linearities.
● Discontinuities.

Limitations

● Uniform Grids.
● Large resolutions required

Limitations

● Overmoothing.
● Large mesh applications.
● Multiscale operators.

Modal Based Methods (POD) Convolutional Neural Nets Graph Neural Nets
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Results and Discussion

POD + GPR CFDGUNET INR

                                        MSE
                  (Non Normalized Outputs, Factor 10e6)

    INR 
(MultiScale)

GUNET POD + GPR

1.51 4.1 3.2
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Monoscale sigma=5 Multiscale sigma=1 & 5

Results and Discussion
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    INR: continuous representation of data.

Learning classes of objects for parametric systems on general domains.

Learn a distinct NN for each sample

Condition a global NN with a latent code z, 
modulating the network outputs [4].

[4] Dupont, Emilien, et al. "From data to functa: Your data point is a function and you can treat it like one." arXiv preprint arXiv:2201.12204 (2022). 30
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