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Introduction: the ML4CFD Challenge

Industrial Interest

Machine Learning task: predicting physical fields around airfoils and estimating integral force coefficients.
Dataset type: realistic CFD dataset computed using the incompressible RANS equations.

Relatively large mesh size, shape variations and variation in the Mach number and angle of attack.
Evaluation not only on accuracy, but also on physical compliance, inference time and generalization.

Challenges

» Data scarcity: only 100 CFD computation available for training.

Data format: changing unstructured grid, with large node size.

Strongly non-linear quantities difficult to predict (ex . Velocity in the boundary layer and drag coefficient).



A step back: MARIO 1.0

Encode-process-Decode

Input INR Output INR Latent mapping

MLP

Main Limitations

° On small datasets this approach is prone to overfitting.

° The regression step in the latent space introduces large errors.

e  The latent vectors predictions are optimized to minimize distance from the ground truth latent vectors and not the
output fields.

[1] Serrano, Louis, et al. "INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations." arXiv e-prints (2023): arXiv-2307.
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MARIO 2.0 : an end-to end architecture
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End-to-end Joint Optimization
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Spectral Bias and Fourier Features Networks

* Neural Fields are subject to spectral bias: difficulty in learning high frequency components of signals.
*  Fourier Features mapping is used to improve the spectral convergence of simple MLPs.
* Input coordinates are embedded using Fourier Features sampled from a Gaussian Distribution .

v(v) = [cos(27BvV), sin(27Bv)]T b~ N(0,0)

No Fourier features

With Fourier features

(b) Image regression  (c) 3D shape regression  (d) MRI reconstruction  (e) Inverse rendering

(z,y)— RGB (z,y,z)— occupancy  (z,y,z)— density  (z,y,2)— RGB, density

° [2] Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." Advances in Neural Information Processing Systems 33 (2020)



Spectral Bias and Fourier Features Networks

* Neural Fields are subject to spectral bias: difficulty in learning high frequency components of signals.
*  Fourier Features mapping is used to improve the spectral convergence of simple MLPs.
* Input coordinates are embedded using Fourier Features sampled from a Gaussian Distribution .

v(v) = [cos(27BvV), sin(27Bv)]T b~ N(0,0)

»  The choice of the sampling standard deviation controls the kernel bandwidth and the optimal is task dependant.

[2] Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." Advances in Neural Information Processing Systems 33 (2020)



Main Network: Multiscale Fourier Features
o By operating multiple frequency encodings, we obtain the optimal kernel bandwidth without extensive finetuning.
.  For multi output physical prediction, different signals have different spectral content.

. Example: velocity presents sharp variation in the boundary layer, while pressure is approx constant

Yo (V) = [sin(27B,,v), cos(27B,,v)]

by, ~N(0,0%) i=1,...M




Main Network: Multiscale Fourier Features
« By operating multiple frequency encodings, we obtain the optimal kernel bandwidth without extensive finetuning.
o For multi output physical prediction, different signals have different spectral content.

« Example: velocity presents sharp variation in the boundary layer, while pressure is approx constant

Example: signal fitting in 1D
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MARIO 2.0 : an end-to end architecture
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Geometric Parametrization

SDF Encoding

Methodology: Encoding the SDF field into a latent representation using a conditional
neural field.

Advantages: General Framework for any shape (also in 3D). Can capture fine shape
variations.

Limitations: Relatively slow at inference time.




Geometric Parametrization

SDF Encoding

Methodology: Encoding the SDF field into a latent representation using a conditional
neural field.

Advantages: General Framework for any shape (also in 3D). Can capture fine shape
variations.

Limitations: Relatively slow at inference time.
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Methodology: Thickness and camber distribution at fixed locations.
Advantages: Fast and reliable for simple 2D airfoil shapes.
Limitations: Impractical for more complex shapes or 3D cases.
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MARIO 2.0 : an end-to end architecture

Input Fields: Feature Engineering
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Input Fields: feature engineering

e The normals are 0 off the surface.
e Asingle model is used to process all points (on and off the surface).

Two of the five given input fields don’t carry useful info for flow domain (most) points.

-> —Removenormalsfields-altogether.



Input Fields: feature engineering

e The normals are 0 off the surface.
e Asingle model is used to process all points (on and off the surface).

Two of the five given input fields don’t carry useful info for flow domain (most) points.

-> —Removenormalsfields-altogether.

=> Process the normals fields to include direction to the closest point on the surface.

=> Obtain an invariant reference frame with respect to the airfoil shape variation (directional sdf)
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Input Fields: feature engineering

Two of the five given input fields don’t carry useful info for flow domain (most) points.

The normals are 0 in the flow domain.
A single model is used to process any point (flow domain or surface).

-> —Removenormalsfields-altogether.

=> Process the normals fields to include direction to the closest point on the surface.

=> Obtain an invariant reference frame with respect to the airfoil shape variation (directional sdf).
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Input Fields: feature engineering continued...

Introducing a “fade factor” had a significant impact. 56
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Input Fields: feature engineering continued...

Introducing a “fade factor” had a significant impact.

x and y components of volumetric normals with optimal fade.
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Input Fields: feature engineering continued...

e Training the various physical fields together was leading to poor results.

e Mainly due to the difference in gradients between velocity and pressure in the boundary layer.



Input Fields: feature engineering continued...

Y Coordinate
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Training the various physical fields together was leading to poor results.
Mainly due to the difference in gradient between velocity and pressure in the boundary layer.

The addition of a clipped distance-function as input lead to significant improvements.
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Results and Discussion
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Low errors on simple geometries

° MARIO achieves great accuracy on simple geometries.
e  The main physical features are well represented.
° It can be used on all NACA 4-5 airfoils with good reliability.
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Results and Discussion

Prediction Absolute Frror
3000 3600 2700
1500 1800 2400
0 0 - / zmng
1500 -1800 1800&‘?
g Z E
—3000 = 3600 < 1500 g
o = §
1500 Dt _5400 i 1200 ;,E
6000 s 900 _é
=
7500 —9000 "
9000 10800 300
0
12000 + Prediction
Target
- - 10000
Higher errors on unseen geometries
8000
° MARIO struggles to generalize on unseen flow patterns, — 6000 (
. . - . a
e  The MSE error is driven by the leading edge region. =
[an
|
& 2000

9000 ! 5 sssaassesmses e
22 4000

0.0 0.2 0.4 0.6 0.8 1.0




Results and Discussion

Metrics Breakdown

° MARIO 2.0 beats its predecessor (encode-process-decode) by an order of magnitude on MSE accuracy.

° MARIO 2.0 matches the performances of state of the art deep learning methods on the Airfrans dataset with Vs of the

training data!!!

° Drag coefficient remains difficult to predict accurately.
° The real speedup is much larger than the one measured by the evaluation system.
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MARIO 2.0 MARIO 1.0

Category Metric Test Test OOD Test Test OOD
Ug 0.0029 0.0042 0.0439 0.0681

Uy 0.0015 0.0027 0.0302 0.0481

MSE Volume 0.0058 0.0201  0.0737 0.1849
z/t 0.0278 0.0480 0.0992 0.3573

MSE Surface P 0.0174 0.0704 0.1664 0.6580
Spearman drag 0.6410 0.5614 0.3688 0.4197

Spearman lift 0.9967 0.9925 0.9713 0.9602

Phvsics Mean rel. drag 0.3585 0.4455 1.5684 1.9172
ysk Std rel. drag  0.4762 0.4815 1.2613 1.4234
Mean rel. lift 0.0712 0.1112 0.3018 0.4690

Std rel. lift 0.1137 0.1772 0.5133 1.4113

Inference Time Real Speedup 5000 5000 1000 1000




Beyond the ML4CFD Challenge

Thanks to the mesh-agnostic formulation, surrogate models based on Neural Fields:
° Are discretization invariant: can be trained at much lower resolution and perform super-resolution at test time.

° Can handle geometric variations, including complex non-parametric geometries in 3D.
e  Are fast at inference time (5000x speedup on the Challenge).
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Beyond the ML4CFD Challenge

Thanks to the mesh-agnostic formulation, surrogate models based on Neural Fields:

° Are discretization invariant: can be trained at much lower resolution and perform super-resolution at test time.
° Can handle geometric variations, including complex non-parametric geometries in 3D.
e  Are fast at inference time (5000x speedup on the Challenge)

Neural Fields can be used to build scalable aerodynamic data-driven simulators:

° For real industrial simulations in 3D over wings and full aircraft simulations.
° For data fusion (experimental data and simulation).
° For shape optimization and multi-disciplinary-optimization (MDO).

scientific reports

Explore content v About the journal v  Publish with us v

nature > scientific reports > articles > article

Article | Open access | Published: 26 October 2024

Neural fields For rapid aircraft aerodynamics
simulations

Giovanni Catalani &, Siddhant Agarwal, Xavier Bertrand, Frédéric Tost, Michael Bauerheim & Joseph

Morlier

Scientific Reports 14, Article number: 25496 (2024) | Cite this article




Thanks for listening!



Implicit Neural Representations: continuous representation of
data.

Neural Networks can be used as a continuous approximation of signals on general domains: the value of the signal at any
spatial input location can be obtained as the output of an Implicit Neural Representation (INRs).

x
K
Yy

—  J

Training a Neural Network: finding the optimal parametefs — {VVl, bl}l:l ey that minimize the reconstruction error

{(wi,yi),Pi)}i:1,...N p = fo(z,y)

Once we fit a signal with a Neural Network, we can query the Network at any spatial location: we have a continuous representation.
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Encode-Process-Decode

Input INR Output INR Latent Dynamics

MLP
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Oout

INR Architecture: Multiscale Fourier Features MLP

[7] Serrano, Louis, et al. "INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations." arXiv e-prints (2023): arXiv-2307.



ML4CFD Neurips Challenge

htt) _s.'//ml_-for- hysical-simulation-challenge.irt-systemx.fr/
Objectives:

* Open international competition aimed at developing Data Driven physical
simulators of Computational Fluid Dynamics.

» Task: Predict surfacic & volumic fields around unseen airfoils at test
Reynolds numbers, Mach and Angles of Attack.

» Really small training dataset with only 100 CFD computations.
Evaluation metrics:

» Accuracy on prediction on and off the airfoil surface.

* Physical compliance: accuracy in prediction of lift and drag.

* Speed: acceleration compared to CFD solver.

» Out of Distribution performance: tested on ood geometries and ood flow

RedGRiL7eS:

*  Our approach based on Neural Fields positioned 3rd among more than 200
teams.

» Times 5000 speedup at inference compared to the high fidelity simulator.
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https://ml-for-physical-simulation-challenge.irt-systemx.fr/

