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Introduction: the ML4CFD Challenge

Industrial Interest
• Machine Learning task: predicting physical fields around airfoils and estimating integral force coefficients.
• Dataset type: realistic CFD dataset computed using the incompressible RANS equations.
• Relatively large mesh size, shape variations and variation in the Mach number and angle of attack.
• Evaluation not only on accuracy, but also on physical compliance, inference time and generalization.

Challenges
• Data scarcity: only 100 CFD computation available for training.
• Data format: changing unstructured grid, with large node size.
• Strongly non-linear quantities difficult to predict (ex . Velocity in the boundary layer and drag coefficient).
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Input INR Output INR Latent mapping

A step back: MARIO 1.0

[1] Serrano, Louis, et al. "INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations." arXiv e-prints (2023): arXiv-2307.

Main Limitations

● On small datasets this approach is prone to overfitting.
● The regression step in the latent space introduces large errors.
● The latent vectors predictions are optimized to minimize distance from the ground truth latent vectors and not the 

output fields.

Encode-process-Decode
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Airbus AmberMARIO 2.0 : an end-to end architecture

Main Operator Network

Hypernetwork Layerwise Modulation

Shift Modulation

End-to-end Joint Optimization
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Airbus AmberMARIO 2.0 : an end-to end architecture

Input Encoding

Main Operator Network

Hypernetwork Layerwise Modulation

Shift Modulation

End-to-end Joint Optimization
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Spectral Bias and Fourier Features Networks

• Neural Fields are subject to spectral bias: difficulty in learning high frequency components of signals.
• Fourier Features mapping is used to improve the spectral convergence of simple MLPs.
• Input coordinates are embedded using Fourier Features sampled from a Gaussian Distribution .

[2] Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." Advances in Neural Information Processing Systems 33 (2020)
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Spectral Bias and Fourier Features Networks

• Neural Fields are subject to spectral bias: difficulty in learning high frequency components of signals.
• Fourier Features mapping is used to improve the spectral convergence of simple MLPs.
• Input coordinates are embedded using Fourier Features sampled from a Gaussian Distribution .

• The choice of the sampling standard deviation controls the kernel bandwidth and the optimal is task dependant.

[2] Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." Advances in Neural Information Processing Systems 33 (2020)
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Main Network: Multiscale Fourier Features 
● By operating multiple frequency encodings, we obtain the optimal kernel bandwidth without extensive finetuning.

● For multi output physical prediction, different signals have different spectral content. 

● Example: velocity presents sharp variation in the boundary layer, while pressure is approx constant
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Main Network: Multiscale Fourier Features 
● By operating multiple frequency encodings, we obtain the optimal kernel bandwidth without extensive finetuning.

● For multi output physical prediction, different signals have different spectral content. 

● Example: velocity presents sharp variation in the boundary layer, while pressure is approx constant

Example: signal fitting in 1D
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Airbus AmberMARIO 2.0 : an end-to end architecture

Geometric 
Parametrization

Main Operator Network

Hypernetwork Layerwise Modulation

Shift Modulation

End-to-end Joint Optimization
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Geometric Parametrization

SDF Encoding 
Methodology: Encoding the SDF field into a latent representation using a conditional 
neural field.
Advantages: General Framework for any shape (also in 3D). Can capture fine shape 
variations.
Limitations: Relatively slow at inference time.
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Geometric Parametrization

SDF Encoding 
Methodology: Encoding the SDF field into a latent representation using a conditional 
neural field.
Advantages: General Framework for any shape (also in 3D). Can capture fine shape 
variations.
Limitations: Relatively slow at inference time.

Thickness and Camber distribution
Methodology: Thickness and camber distribution at fixed locations.
Advantages: Fast and reliable for simple 2D airfoil shapes.
Limitations: Impractical for more complex shapes or 3D cases.
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Airbus AmberMARIO 2.0 : an end-to end architecture

Input Fields: Feature Engineering

Main Operator Network

Hypernetwork Layerwise Modulation

Shift Modulation

End-to-end Joint Optimization
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Input Fields: feature engineering
● The normals are 0 off the surface.
● A single model is used to process all points (on and off the surface).

Two of the five given input fields don’t carry useful info for flow domain (most) points.

➔ Remove normals fields altogether.
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Input Fields: feature engineering

x and y components of volumetric normals.

● The normals are 0 off the surface.
● A single model is used to process all points (on and off the surface).

Two of the five given input fields don’t carry useful info for flow domain (most) points.

➔ Remove normals fields altogether.
➔ Process the normals fields to include direction to the closest point on the surface.
➔ Obtain an invariant reference frame with respect to the airfoil shape variation (directional sdf)
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Input Fields: feature engineering

x and y components of volumetric normals.

Velocity only

● The normals are 0 in the flow domain.
● A single model is used to process any point (flow domain or surface).

Two of the five given input fields don’t carry useful info for flow domain (most) points.

➔ Remove normals fields altogether.
➔ Process the normals fields to include direction to the closest point on the surface.
➔ Obtain an invariant reference frame with respect to the airfoil shape variation (directional sdf).



17

Airbus Amber

x and y components of volumetric normals with optimal fade.

Input Fields: feature engineering continued…
       Introducing a “fade factor” had a significant impact.
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x and y components of volumetric normals with optimal fade.

Input Fields: feature engineering continued…
       Introducing a “fade factor” had a significant impact.

Velocity only
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Input Fields: feature engineering continued…
● Training the various physical fields together was leading to poor results.

● Mainly due to the difference in gradients between velocity and pressure in the boundary layer.
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Input Fields: feature engineering continued…
● Training the various physical fields together was leading to poor results.

● Mainly due to the difference in gradient between velocity and pressure in the boundary layer.

● The addition of a clipped distance-function as input lead to significant improvements.

Pressure + 
velocity
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Results and Discussion

Low errors on simple geometries

● MARIO achieves great accuracy on simple geometries.
● The main physical features are well represented.
● It can be used on all NACA 4-5 airfoils with good reliability.
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Results and Discussion

Higher errors on unseen geometries

● MARIO struggles to generalize on unseen flow patterns,
● The MSE error is driven by the leading edge region.
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Results and Discussion

Metrics Breakdown

● MARIO 2.0 beats its predecessor (encode-process-decode) by an order of magnitude on MSE accuracy.

● MARIO 2.0 matches the performances of state of the art deep learning methods on the Airfrans dataset with ⅛ of the 
training data!!!

● Drag coefficient remains difficult to predict accurately.
● The real speedup is much larger than the one measured by the evaluation system.
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Beyond the ML4CFD Challenge 

Thanks to the mesh-agnostic formulation, surrogate models based on Neural Fields:

● Are discretization invariant: can be trained at much lower resolution and perform super-resolution at test time.
● Can handle geometric variations, including complex non-parametric geometries in 3D.
● Are fast at inference time (5000x speedup on the Challenge).
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Beyond the ML4CFD Challenge 

Neural Fields can be used to build scalable aerodynamic data-driven simulators:

● For real industrial simulations in 3D over wings and full aircraft simulations.
● For data fusion (experimental data and simulation).
● For shape optimization and multi-disciplinary-optimization (MDO).

Thanks to the mesh-agnostic formulation, surrogate models based on Neural Fields:

● Are discretization invariant: can be trained at much lower resolution and perform super-resolution at test time.
● Can handle geometric variations, including complex non-parametric geometries in 3D.
● Are fast at inference time (5000x speedup on the Challenge)
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Thanks for listening!
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Neural Networks can be used as a continuous approximation of signals on general domains: the value of the signal at any 
spatial input location can be obtained as the output of an Implicit Neural Representation (INRs).

Implicit Neural Representations: continuous representation of 
data.

Training a Neural Network: finding the optimal parameters                                               that minimize the reconstruction error

Once we fit a signal with a Neural Network, we can query the Network at any spatial location: we have a continuous representation.
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C
o
n
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a
t

Input INR Output INR Latent Dynamics

INR Architecture: Multiscale Fourier Features MLP

Encode-Process-Decode

[7] Serrano, Louis, et al. "INFINITY: Neural Field Modeling for Reynolds-Averaged Navier-Stokes Equations." arXiv e-prints (2023): arXiv-2307.



29

Airbus Amber

ML4CFD Neurips Challenge
https://ml-for-physical-simulation-challenge.irt-systemx.fr/

Objectives:
• Open international competition aimed at developing Data Driven physical 

simulators of Computational Fluid Dynamics. 
• Task: Predict surfacic & volumic fields around unseen airfoils at test 

Reynolds numbers, Mach and Angles of Attack.
• Really small training dataset with only 100 CFD computations.
Evaluation metrics:
• Accuracy on prediction on and off the airfoil surface.
• Physical compliance: accuracy in prediction of lift and drag.
• Speed: acceleration compared to CFD solver.
• Out of Distribution performance: tested on ood geometries and ood flow 

regimes.Results:
• Our approach based on Neural Fields positioned 3rd among more than 200 

teams.
• Times 5000 speedup at inference compared to the high fidelity simulator.

https://ml-for-physical-simulation-challenge.irt-systemx.fr/

